Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Assunto principal
Tipo de estudo
Intervalo de ano de publicação
1.
Am J Biol Anthropol ; : e24922, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38409941

RESUMO

OBJECTIVES: Comparisons between Indigenous peoples over time and within a particular geographic region can shed light on the impact of environmental transitions on the skeleton, including relative bone strength, sexual dimorphism, and age-related changes. Here we compare long bone structural properties of the inhabitants of the late prehistoric-early historic Pecos Pueblo with those of present-day Indigenous individuals from New Mexico. MATERIALS AND METHODS: Femora and tibiae of 126 adults from Pecos Pueblo and 226 present-day adults were included in the study. Cross-sectional diaphyseal properties-areas and second moments of area-were obtained from past studies of the Pecos Pueblo skeletal sample, and from computed tomography scans of recently deceased individuals in the present-day sample. RESULTS: Femora and tibiae from Pecos individuals are stronger relative to body size than those of present-day Indigenous individuals. Present-day individuals are taller but not wider, and this body shape difference affects cross-sectional shape, more strongly proximally. The tibia shows anteroposterior strengthening among Pecos individuals, especially among males. Sexual dimorphism in midshaft bone shape is stronger within the Pecos Pueblo sample. With aging, Pecos individuals show more medullary expansion but also more subperiosteal expansion than present-day individuals, maintaining bone strength despite cortical thinning. DISCUSSION: Higher activity levels, carried out over rough terrain and throughout adult life, likely explain the relatively stronger lower limb bones of the Pecos individuals, as well as their greater subperiosteal expansion with aging. Greater sexual dimorphism in bone structure among Pecos individuals potentially reflects greater gender-based differences in behavioral patterns.

2.
Sci Rep ; 13(1): 15204, 2023 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-37709850

RESUMO

Chronic positive energy balance has surged among societies worldwide due to increasing dietary energy intake and decreasing physical activity, a phenomenon called the energy balance transition. Here, we investigate the effects of this transition on bone mass and strength. We focus on the Indigenous peoples of New Mexico in the United States, a rare case of a group for which data can be compared between individuals living before and after the start of the transition. We show that since the transition began, bone strength in the leg has markedly decreased, even though bone mass has apparently increased. Decreased bone strength, coupled with a high prevalence of obesity, has resulted in many people today having weaker bones that must sustain excessively heavy loads, potentially heightening their risk of a bone fracture. These findings may provide insight into more widespread upward trends in bone fragility and fracture risk among societies undergoing the energy balance transition.


Assuntos
Fraturas Ósseas , Humanos , Densidade Óssea , Ingestão de Energia , Exercício Físico , Fraturas Ósseas/epidemiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...